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Abstract

The vertical vibrations of rigid circular disks on elastic and viscoelastic stratums subjected to high-frequency vertical

excitations are studied. The responses of rigid disks subjected to ground-transmitted harmonic and transient waves are

discussed. It is found that the existence of the stratums has damping effect on the responses of the disks. The damping

effect is dependent upon the Poisson’s ratio of the stratum, its depth and material damping as well as the excitation

frequency and the mass of the disk.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In soil dynamics and foundation engineering, the dynamic interaction of a structure with ground is an
important subject, and it has received considerable attention [1]. A topic of great interest in understanding the
interaction between soil and structure is the dynamic force–displacement relationship of a rigid body attached
to a half-space or a layered half-space. Such relationships, when expressed as influence functions or interaction
coefficients, reduce the problem of finding the dynamic response of surface structures to a set of algebraic
equations. They can be used as a basis for the analysis of the response of surface structures to dynamic
loadings, in particular, underground explosive loadings, seismic excitations and machine vibrations. Of
particular importance is the force–displacement relationship of a harmonically vibrating rigid plate. Once this
relationship has been established, the harmonic or transient response of any linear foundation may be
evaluated by standard procedures.

For an elastic half-space, a large amount of research work has been done on the subject beginning with the
work of Lamb [2]. A few analytical techniques such as integral transform, Green’s functions, etc., as well as
boundary element and other numerical methods have been presented to deal with various aspects of the topic.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Collins [3] studied the torsional oscillations of a rigid disk supported by a semi-infinite solid. Awojobi and
Grootenhuis [4], Zakorko and Rostovtsev [5], Robertson [6] and Gladwell [7] analyzed the vertical, tangential
and/or rocking oscillations of a smooth disk in contact with a half-space. On the other hand, Karasudhi et al.
[8] determined the force–displacement relationships due to harmonic oscillations of a smooth rectangular
footing at the surface of a half-space. Luco and Westman [9] discussed the vertical vibrations of a rigid body
on an elastic half-space. Veletsos and Tang [10] investigated the vibrations of a rigid annular body attached to
a half-space.

As known, the elastic stratum is a more realistic representation of the actual medium in practice. However,
all the works mentioned above are restricted to the case of a rigid body on a homogeneous elastic half-space.
To remove such limitation by representing the ground as an elastic medium consisting of a layer of constant
thickness supported on an elastic half-space Awojobi [11] dealt with the torsional oscillations of a rigid
circular body and discussed the practical need to study vibrations of rigid bodies on a stratum rather than the
conventional half-space. For the same case of torsional oscillations, Gladwell [12] obtained approximate low-
frequency solutions. For the vertical vibrations of a rigid circular body and the rocking of a long rigid
rectangular body on an infinitely wide elastic stratum, Awojobi [13] formulated the mixed boundary-value
problems in terms of dual integral equations and obtained approximate solutions of these equations in low-
frequency range. For structures of high inertia ratios, the low-frequency solutions would be adequate in most
cases if interest in the problem were limited to the prediction of resonant frequency. However, the low-
frequency solutions often become invalid in high-frequency range that may be quite apart from a
consideration of resonance. Accordingly, Awojobi [14] delineated the high-frequency torsional vibrations of a
rigid circular body on an elastic stratum and vertical vibrations on a half-space under harmonic loading. The
problems were solved without assuming the form of the unknown dynamic stress distribution under the rigid
bodies, and the exact formulations of the problems in terms of dual integral equations were solved by finding a
dominant approximation to these equations at very high frequency.

It is noted that Awojobi [14] only gave the solution for the elastic half-space in the case of vertical high-
frequency vibration under harmonic loading. Thus, in this paper, the vertical vibrations of rigid circular disks
on elastic and viscoelastic stratums under high-frequency vertical excitations are studied. The responses of
rigid disks subjected to vertically incident harmonic and transient waves are discussed, respectively.

2. Response of disk on elastic stratum

2.1. Governing dual integral equations and method of solution

Consider a rigid circular disk of radius a subjected to vertical vibration with the angular frequency of
harmonic excitation o at the surface of an elastic stratum (see Fig. 1). The depth of the stratum is denoted by
h, and its Poisson’s ratio and shear modulus are represented by n and G, respectively. Then the velocities of the
h a

z

r

Circular Disk

Stratum

Half-Space Bedrock

Fig. 1. Geometry of the problem under consideration.
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compressional and shear waves Vc and Vs can be expressed as

V 2
c ¼

2ð1� nÞG
rð1� 2nÞ

, (1)

V 2
s ¼

G

r
, (2)

where r denotes the density of the stratum. In addition, the zero-order Hankel transform of the unknown
stress distribution s(r) immediately under the rigid disk can be obtained by

tðpÞ ¼ sðrÞ ¼
Z 1

0

sðrÞrJ0ðprÞdr,

where p is the transform parameter.
Introducing the non-dimensional quantities Z ¼ pa, Z1 ¼ oa=V c, Z2 ¼ oa=V s, R ¼ r=a and H ¼ h=a, we

have the following governing dual integral equations [13]:

Z22
G

Z 1
0

a1F ðZÞJ0ðZRÞdZ

ð2Z2 � Z22Þ
2 cothða1HÞ � 4Z2a1a2 cothða2HÞ

¼ u0
z ð0oRo1Þ, (3)

Z 1
0

F ðZÞJ0ðZRÞdZ ¼ 0 ðR41Þ, (4)

where u0
z denotes the vertical displacement of the rigid disk, and

F ðZÞ ¼ ptðpÞ,

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � Z21

q
,

a2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � Z22

q
.

It is noted that no exact solution of the pair of Eqs. (3) and (4) is, at present, available. It is therefore
necessary to seek an approximate solution for the pair of equations. It is found that the function y ¼

x=ð1þ x2Þ
1=2 is adequately close to the hyperbolic tangent function and the two functions and their derivatives

are identical at the origin and at infinity [11]. Consequently, Eqs. (3) and (4) becomeZ 1
0

a21
c

F Zð ÞJ0ðZRÞdZ ¼
Gu0z
Z22

ð0oRo1Þ, (5)

Z 1
0

F ðZÞJ0ðZRÞdZ ¼ 0 ðR41Þ, (6)

where

c ¼ ð2Z� Z22Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � Z21e

q
� 4Z2ðZ2 � Z21Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � Z22e

q
,

with

Z1e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z21 � 1=H2

q
; Z2e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z22 � 1=H2

q
.

As known from Awojobi [14], the frequency factor Z2 ¼ oa=V s is a fundamental parameter in the vibrations
of rigid bodies on an elastic medium. It is noted that Z2=Z1 ¼ V c=Vs and normally Z24Z1. In general, the
vibration is in high-frequency range when the value of Z2 is greater than unity. At high-frequency factors, the
contribution to the integral in Eq. (5) comes from small values of Z. Hence, for a1, a2 and c we have the
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following approximate expressions in the range ZoZ1

a1 � iZ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2n
2ð1� nÞ

s
ð0oZoZ1oZ2Þ, (7)

a2 � iZ2 ð0oZoZ1oZ2Þ, (8)

c � iZ42Z1e ð0oZoZ1oZ2Þ, (9)

where the imaginary number i ¼
ffiffiffiffiffiffiffi
�1
p

. Substitution of the above approximate expressions into the governing
dual integral equations leads toZ 1

0

F1ðZÞJ0ðZRÞdZ ¼ i
2ðn� 1ÞGu0zZ1e

ð1� 2nÞ
ð0oRo1Þ, (10)

Z 1
0

F1ðZÞJ0ðZRÞdZ ¼ 0 ðR41Þ, (11)

with

F1ðZÞ ¼ i
2ðn� 1Þ

ð1� 2nÞ
GZ1eu0

zJ1ðZÞ, (12)

where F1(Z) corresponds to the approximation solution of F(Z) and in which all contributions to the first
integrals from the range Z4Z1 have been neglected.

2.2. Force– displacement relationship

To obtain the relationship between the external force and the displacement of the rigid disk,
the dynamic stress distribution under the rigid disk should be determined. Using Hankel’s inversion theorem,
we have

sðrÞ ¼
Z 1

0

tðpÞpJ0ðprÞdp.

It follows from the above equation that

sðRÞ ¼
1

a

Z 1
0

F ðZÞJ0ðZRÞdZ

�
i2Gðn� 1ÞZ1eu0

z

að1� 2nÞ

Z 1
0

J1ðZÞJ0ðZRÞdZ, ð13Þ

where use is made of the following approximate solution:

F ðZÞ � F1ðZÞ. (14)

It follows from Eq. (13) that

sðRÞ � iZ1e

2Gðn� 1Þu0
z

að1� 2nÞ
ð0oRo1Þ, (15)

sðRÞ ¼ 0 ðR41Þ. (16)

We now consider the vibrations of the rigid disk under an harmonic force Feiot. By the use of the impedance
method, we have Z 1

0

sðRÞa22pRdR�mo2u0
z þ F ¼ 0, (17)
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which is the equation of vertical vibrations under the excitation for the disk of mass m. Substituting for s(R)
from Eq. (15) into Eq. (17) and introducing the non-dimensional mass of the disk M ¼ m=ra3, we obtain

F ¼ Ku0
z , (18)

where K is the complex-valued vertical impedance function. The impedance function is usually written in the
form

K ¼ GaðPþ iZ2QÞ, (19)

where P and Q are normalized stiffness and damping coefficients, respectively, and they can be expressed as

P ¼MZ22, (20)

Q ¼
2ð1� nÞpZ1e

ð1� 2nÞZ2
. (21)

2.3. Response to wave excitations

To determine the response of the disk subjected to elastic wave excitation, care must be exercised in
determining the appropriate input ground motion. It is known that the effective foundation input motion u� is
the response of a massless foundation with the same shape as the actual foundation when subjected to the
elastic wave excitation in the absence of other external forces. If the foundation is under a free-field ground
motion characterized by the amplitude uge

iot on the surface of the ground, we have

u� ¼ Sug, (22)

where S stands for the input motion factor representing the kinematic interaction effects. It should be pointed
out that numerical values for the factor S for various foundation geometries and types of excitation have been
given by Day [15], Dominguez [16], Wong and Luco [17] and Mita and Luco [18]. In the particular case of a
surface foundation (no embedment) subjected to vertically incident waves, S ¼ 1 and u� ¼ ug. In all other
cases, S6¼1 and u�aug.

For the case of vertically incident harmonic wave excitation, Eq. (18) can be rewritten as

Ku0
z �mo2u�z ¼ 0, (23)

where u�z denotes the effective ground input motion in the vertical direction. It follows that

u0
z

u�z
¼

mo2

K
. (24)

Then the magnitude of the amplitude ratio can be expressed as

w ¼
u0

z

u�z

����
���� ¼ MZ22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bðpZ22 � b=H2Þ þM2Z42

q , (25)

where

b ¼
2ð1� nÞp
1� 2n

.

When the Poisson’s ratio of the stratum n ¼ 0.3 and the non-dimensional mass of the disk M ¼ 2.0, the
effect of the depth of the stratum on the response of the disk is obtained from Eq. (25) and shown in Fig. 2. It
is seen that the difference between the values of the two displacement amplitudes becomes less pronounced
with increasing the exciting frequency and decreasing the depth of the stratum. It can also be found that the
sensitiveness of the amplitude ratio to the depth of the stratum decreases with the increase of the exciting
frequency. In addition, from Fig. 2 it can be obviously concluded that the existence of the stratum has the
radiation damping effect on the response of the disk, and the damping effect gets more significant with the
increase of the depth of the stratum and the decrease of the exciting frequency.
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Fig. 2. Effect of the depth of stratum on the response of disk.
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Fig. 3. Influence of the Poisson’s ratio of stratum on the response of disk.
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When the non-dimensional depth of the stratum H ¼ 3.0 and the exciting frequency Z2 ¼ 4.0, the variation
of the magnitude of the amplitude ratio with the Poisson’s ratio of the media and the mass of the disk is
illustrated in Fig. 3. As shown, if the radius of the disk keeps unchanged, the distinction between the values of
the two displacement amplitudes gets more visible with the increase of the Poisson’s ratio of the stratum and
the diminishment of the mass of the disk. This implies that the radiation damping effect of the stratum on the
response of the disk becomes more pronounced when the Poisson’s ratio of the stratum increases and the mass
of the disk decreases.

In the following, we study the problem regarding the response of a rigid disk on an elastic stratum subjected
to a ground-transmitted transient excitation.

In a typical dynamic analysis, the basic mathematical model adopted is a lumped mass with a spring and
dashpot. The response of the mass is dependent on the property of the stratum reaction, which may be
modeled by the spring and the dashpot. When subjected to a ground-transmitted excitation, the equation of
motion for this rigid disk in the vertical direction can be obtained by [19]

m €u0
z þ c _u0

z þ ku0
z þm €uzðtÞ ¼ 0, (26)

where €uzðtÞ is the absolute ground acceleration time history in the vertical direction measured at the location of
the future disk foundation, and parameter k and c are the true stiffness constant and damping constant, which
is defined by

k ¼ GaP ¼ GaMZ22, (27)
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c ¼
GaZ2
o

Q ¼
2ð1� nÞG
ð1� 2nÞ

a2pZ1e

V sZ2
. (28)

In the case of the transient excitation, a Fourier analysis can be used to obtain the response of the disk in the
frequency domain. In this case, the excitation can be simulated by the sum of the harmonic components, which
are obtained by the use of the discrete Fourier transform (DFT).

Under the action of the nth harmonic component of the excitation in the vertical direction, the response of
the disk is governed by

m €u0ðnÞ
z þ c _u0ðnÞ

z þ ku0ðnÞz ¼W ne
iont, (29)

where Wn and on are the amplitude and frequency of that harmonic component. Furthermore, we have [19]

u0ðnÞ
z ðtÞ ¼ HnW ne

iont, (30)

where the transfer function Hn is obtained by

Hn ¼
1

k

1

1� g2 þ i2tg
¼ Hnj je

ifn , (31)

where |Hn| denotes the modulus of the transfer function, and

g ¼
on

ō
, (32)

t ¼
c

2
ffiffiffiffiffiffiffi
km
p , (33)

fn ¼ tan�1½�con=ðk �mo2
nÞ� (34)

with

ō ¼

ffiffiffiffi
k

m

r
.

On the basis of the principle of superposition, the total response is given by

u0
zðtÞ ¼

X
u0ðnÞ

z ðtÞ. (35)

A case of interest is the response of a disk subjected to blast-induced ground shock. It is assumed that the
radius of the disk is 1.0m, and its mass is 4000.0 kg. The inertial force due to the blast-induced ground motion
at free ground surface is adopted as the dynamic excitation force. The Fourier amplitude spectrum of a typical
inertial force due to blast-induced ground shock in the vertical direction is shown in Fig. 4.
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Fig. 4. Fourier amplitude spectrum of a typical inertial force due to ground shock.
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When the Poisson’s ratio of the stratum n ¼ 0.2, the density of the stratum r ¼ 2500 kg/m3, and its shear
modulus G ¼ 40MPa, the influence of the depth of the stratum on the displacement of the disk under blast
loading is obtained, which is shown in Fig. 5. As can be seen, the peak displacement for the disk is reduced
with the increase of the depth of the stratum, which implies that the radiation damping effect of the stratum
becomes more significant with the depth of the stratum increased.

For a particular case with the depth of the stratum h ¼ 4m, the density of the stratum r ¼ 2500 kg/m3, and
its shear modulus G ¼ 40MPa, the effect of the Poisson’s ratio of the stratum on the displacement of the disk
under blast loading is indicated in Fig. 6. As shown, the peak displacement for the disk decreases with
increasing the value of the Poisson’s ratio of the stratum. Thus, it can be concluded that the radiation damping
effect of the stratum gets more noticeable when the value of the Poisson’s ratio of the stratum increases.

3. Response of disk on viscoelastic stratum

There exist two mechanisms of energy dissipation in foundation dynamics, namely wave radiation and
material damping. Elastic continuum models of a medium such as soil under the disk capture only the
radiation effect. However, the effect of material damping may become rather important in the case of the
supporting medium subjected to high-intensity excitations. To incorporate material damping, we herein
idealize the stratum as a linear viscoelastic solid, and the constant hysteretic model of viscoelastic action is
considered.

By application of the correspondence principle [20], the impedance function Kv for the case of a
disk on the viscoelastic stratum can be determined from Eq. (19) simply by replacing the real-valued shear
modulus G by a complex modulus ~G. It should be mentioned that herein an assumption has been made that
Poisson’s ratio for the viscoelastic material is the same as that for the material in the corresponding elastic
problem. When n ¼ 1/2, no approximation exists in this assumption. The inaccuracy that may be involved for
all other values of n of practical interest is expected to be negligible for most engineering purposes.
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The complex modulus ~G is defined by

~G ¼ G 1þ i
oG0

G

� �
, (36)

where G0 is the shear modulus of viscosity, and it is defined by

G0 ¼
G tan d

o
, (37)

in which tan d denotes the coefficient of friction with d standing for a sort of angle of mobilized internal
friction for the soil.

It should be noted that the value of tan d is normally less than 0.05 at small strains, whereas for the much
larger strains associated with high-intensity motions, its value may be as high as 0.3 or 0.4. The maximum
possible upper limit of d is the angle of repose of sand slopes, around 351, which implies that tan d can never
exceed about 0.7.

Upon making the indicated substitutions, Eq. (19) can be written as

Kv ¼ ~Gað ~Pþ i~Z2 ~QÞ, (38)

where superscript v refers to the viscoelastic problem, and

~P ¼M ~Z22, (39)

~Q ¼
2ð1� nÞp~Z1e

ð1� 2nÞ~Z2
(40)

with

~Z22 ¼
ro2a2

~G
, (41)

~Z21e ¼
rð1� 2nÞo2a2

2ð1� nÞ ~G
. (42)

Separating the real and imaginary parts, Eq. (38) can also be written in the form

Kv ¼ GaðPv þ iZ2Q
vÞ, (43)

where Pv and Qv are real-valued functions which can be, respectively, expressed as

Pv ¼ A1 � A5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� A3

2

r
� A2 þ A5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ A3

2

r !
tan d, (44)

Qv ¼
1

Z2
A2 þ A5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ A3

2

r
þ A1 � A5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� A3

2

r !
tan d

" #
, (45)

in which

A1 ¼
MZ22

1þ tan2 d
,

A2 ¼
�MZ22 tan d
1þ tan2 d

,

A3 ¼
H2Z22ð1� 2nÞ � 2ð1� nÞð1þ tan2 dÞ

2ð1� nÞð1þ tan2 dÞH2
,
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A4 ¼ �
Z22ð1� 2nÞ tan d

2ð1� nÞð1þ tan2 dÞ
,

A5 ¼
2ð1� nÞp
1� 2n

,

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

3 þ A2
4

q
.

Replacing the impedance function K in Eq. (24) with the function Kv, we obtain the amplitude ratio of the
deformation of the disk to that of the effective ground input as follows:

w ¼
u0

z

u�z

����
���� ¼ MZ22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPvÞ
2
þ Z22ðQ

vÞ
2

q . (46)

As an example, assuming the Poisson’s ratio of the stratum n ¼ 0.3, the non-dimensional depth of the
stratum H ¼ 3.0, and the non-dimensional mass of the disk M ¼ 2.0, the effect of the material damping on the
response of the disk is obtained from Eq. (46) and shown in Fig. 7. As can be seen, the ratio w is reduced with
the increase of the material damping. In other words, the damping effect of the stratum gets more pronounced
with increasing the material damping.
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Fig. 7. The effect of the material damping on the response of the disk.
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For the case with the Poisson’s ratio of the stratum n ¼ 0.3, the non-dimensional mass of the disk M ¼ 2.0,
and tan d ¼ 0.4, the influence of the depth of the stratum on the response of the disk is obtained from Eq. (46)
and illustrated in Fig. 8. It can be observed that the damping effect becomes more pronounced when the depth
of the viscoelastic stratum increases and the excitation frequency decreases. This is consistent with that shown
in Fig. 2 for the case of elastic stratum.

When the non-dimensional depth of the stratum H ¼ 3.0, the exciting frequency Z2 ¼ 4.0, and tan d ¼ 0.4,
the variation of the magnitude of the amplitude ratio with the Poisson’s ratio of the media and the mass of the
disk is indicated in Fig. 9. As can be seen, the influences of the Poisson’s ratio of the stratum and the mass of
the disk on the damping effect of viscoelastic stratum are similar to those shown in Fig. 3 for the case of elastic
stratum.

In the case of rigid disk on viscoelastic stratum subjected to ground-transmitted transient excitation, the
true stiffness constant kv and damping constant cv can be, respectively, obtained by

kv
¼ GaPv, (47)

cv ¼ a2
ffiffiffiffiffiffiffi
rG

p
Qv. (48)

By the replacement of k and c with kv and cv, the viscoelastic solutions can be determined from the
corresponding elastic solutions.

In what follows, the response of the disk supported by a viscoelastic stratum under blast-induced ground
shock is considered. Both the radius of the disk and its mass are the same as those in elastic case, and the blast
loading is also the same. With the depth of the stratum h ¼ 4m, the density of the stratum r ¼ 2500 kg/m3,
and its shear modulus G ¼ 40MPa, the effect of material damping of the stratum on the response of the disk
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under blast loading is illustrated in Fig. 10. It can be observed that the peak displacement for the disk
decreases with the increase of material damping of the stratum.

4. Conclusions

The vertical vibrations of rigid circular disks on elastic and viscoelastic stratums under high-frequency
vertical excitations are investigated. The responses of rigid disks subjected to ground-transmitted harmonic
and transient waves are discussed, respectively.

It is concluded that the existence of the stratum has the radiation damping effect on the response of the disk,
and the radiation damping effect becomes more significant with the increase of the depth of the stratum and its
Poisson’s ratio and with the decrease of the excitation frequency and the mass of the disk. On the other hand,
the radiation damping effect of the stratum is also dependent on the material damping, and it gets more
pronounced with the augmentation of the material damping.
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